Explainable Lifelong Streaming Learning

CHUKIONGLOO
ckloo.um@um.edu.my

1 '?. i
-

S

Faculty of Computer Science & Information




Outlines

e Continual Learning Overview

* Introduction to Lifelong Learning

* Lifelong Learning Setup

* Explainable Lifelong Streaming Learning
* Future Works



2 o=

Tﬁ‘@ﬂ@ the] Procedural Memory for placing different objects.



llesti2i LYecalize and recognize multiple objects.



. msm  continual
Introduction to s =i
( . . ) dc_cy 600—
Continual Learning =

s -

literature & I
8 200- I

. . . . g -.__-.-.

* ‘Continual learning’ vs. ‘lifelong learning’ 2 __._-IIIIIIIIII

e Often used interchangeably " i:iil!llll . ' .

e Popularity of ‘continual learning’ more recent e e w8 B

Number of machine learning publications per
year, based on keyword occurrence in abstract.
Source: Mundt et al. (2022, ICLR)

We use these terms as follows:

- Continual learning (narrow) how to deal with non-stationarity in training data
- Lifelong learning  (broad) an agent learning throughout its lifetime



Continual Learning
Challenges in
Practical Applications

* A robot acquiring new skills in
different environment, adapting to
new situations, learning new tasks




Continual Learning
Challenges in
Practical Applications

A self-driving car adapting to
different environments (from a
country road to a highway to a city)




Continual Learning
Challenges in
Practical Applications

* Conversational agents adapting
to different users, situations, tasks

What can i help
you with?

you with




Continual Learning
Challenges in
Practical Applications

* Medical applications: adapting to
new patients, new hospital
conditions




Continual Learning
Challenges in
Practical Applications

* Multi-game environments
(e.g. OpenAl gym)




Static datasets: Controlled

10

Small scale, but (some) controlled acquisition parameters

Image Object pose Ilumination direction
number || Frontal | 22.5° | 22.5° || Frontal | ~ 45° ~ 45 °
right left from top | from side
1 X X
2 X X
3 X X
4 X X
3 X X
6 X X
7 X X
8 X X
9 X X

Table 3: The labeling of images within each scale in the KTH-TIPS database.

Image #5

| | L N

Image #7 Image #8

Hayman et al, “On the significance of real-world conditions for material classification”, ECCV 2004 & Fritz, Hayman et al, “The KTH-TIPS database”, technical report 2004



Static datasets: large scale .

A big focus of modern dataset has been on large scale & diversity

Candle Oyster Cannon  Spider Web Skewdriver

Hatchet Pool Table .l.c‘op;'u’(l

. Amount of Texture
Object Scale

) “a
Red Wine

Lizard  Stocking Ant

Mushroom Strawberry
v

Number of Instances Color Distinctiveness = | ‘

]

Jigsaw Puzzle  Foreland Lion Bell
Shape Distinctiveness R 'P

Real-world Size

Compass Racket Minmivan Steel Drum

Canoe  Pill BottleHorse-c: irt

Monkey

Low High

Russakovsky & Deng et al, “ImageNet Large Scale Visual Recognition Challenge, IJCV 2015, (challenges since 2010)



Challenge: Data Stream

https://www.bostondynamics.com/products/spot
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50GB/s streaming data.

~30240 TB of data after
only aweek.

Impossible to re-train the
mini-spot  brain  from
scratch and to adapt fast.



Continual Learning.....

Humans: Continual learning, non stationary data

L Muntz, 1898
J-H Fragonard, 1770
S Koninck, 1643

Use

"
Training phase
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Human-like learning
Smalldata,n=> 1

Supervised learning
Big data, n = oo



Relation to other fields +

I Continual Learning Transfer Learning Multitask Learning Online Learning

| & : & B
« One task I - Multiple tasks \  Multiple tasks  Multiple tasks * One task

i on- . . .
. Dataavailable " ~ Dataarrive et * Data arrive * Dataavailableat ~ * Dataarrive
i stationar . . .
at the same time incrementally y incrementally the same time incrementally
* Goal: all tasks * Goal: last task « Goal: all tasks

Source: De Lange et al. (2021, TPAMI)



The canonical continual learning example:
Split MNIST

 MNIST dataset is split into multiple parts/episodes/tasks(*) that must be learned

sequentially
e After all tasks have been learned, the model should be good at all tasks

* Typically, no or only a small amount of data from past tasks can be stored

Task 1 Task 2 Task 3 Task 4 Task 5

0]/ 219

Time
Important problem: catastrophic forgetting

> When learning a new task, deep neural networks tend to rapidly forget past tasks

15



Going beyond Split MNIST

Splitting up existing image datasets:
 CIFAR-10

 CIFAR-100
 (Tiny)ImageNet

Datasets specific for continual learning
e CORe-50

* Stream-51

e The CLEAR Benchmark

Beyond Classification

* Continual reinforcement learning
* Continual object detection

* Continual semantic segmentation

16
Task 1 Task 2 Task 10
(10 classes) (10 classes) (10 classes)
BEECE o EdsN | - HEEDE
iSelln BaEN,. | ~WREE

Source: van de Ven et al. (2020, Nature Communications)

Pat = - i ...... H ﬁ’ ,‘ -

o B o BB ol PN O B

2004 2007 2011
Source: Lin et al. (2021, NeurlPS Datasets and Benchmarks Track)

Olyes Segmentation Semantic
Df.t ctior °8 ) Segmentation

'|Basketoffrun lir '71 ,=“ :
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Classification

Source: Toldo et al. (2020, Technologies)
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CORebO: different types of continual
learning

Class
)

Instance

Source: Lomonaco & Maltoni (2017, CoRL)



Three Continual Learning Scenarios: intuitively *?

* Task-incremental learning (Task-IL) o .
* Incrementally learn a set of clearly distinguishable tasks ).

Important challenge: achieve positive transfer between tasks

* Domain-incremental learning (Domain-IL)
* Learn the same type of problem in different contexts PN

Important challenge: alleviate catastrophic forgetting o 0 o 0

* Class-incremental learning (Class-IL)

| g ) @ X, PN
* Incrementally learn a growing number of classes Sy O \ i‘“ e ‘
1 1 ,‘ ] I

- mm 2= =

Important challenge: learn to discriminate between objects not observed together

Images designed by Freepik

Sources: van de Ven & Tolias (2018, NeurlPS workshop), van de Ven et al. (2022, Nature Machine Intelligence)




Task-based vs. Task-free Continual Learning

Task-based data stream

Task 1 Task 2 Task 3

/[0]1]0]0
L\ [} 010/

™ N/

Task-boundaries Experiences

Task-free data stream ‘// l

e; | e, | e | es | es | e | e; | eg | €
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Time




Baselines: finetuning (lower target) & joint
training (upper target)

Split MNIST:

None' Network Sequentla“y Task 1 Task 2 Task 3 Task 4 Task 5

trained on each task in the m ﬁﬂ

standard way (lower target)

Type of choice

Joint: Network trained on all

Task-incremental Choice between the two digits of the task
ta S kS at t h e same tl me Domain-incremental Is the digit odd or even?
(u p pe r ta rgEt) Class-incremental Choice between all ten digits
Task-incremental Domain-incremental Class-incremental
14 Joint 14 Joint 11 Joint
- < 0.8 1
55 0.95 0:3
© o
o 0.8 0.6 1
o 09
© G J i
Jﬁ o 0.7 0.4
= 3 0.85 "
- ois 0.6 1 None 0.21 None
> >
$l L Ll L T $'I L T L] Ll 0 L L] L] L] Ll
1 2 3 4 5 1 2 3 4 5 1 2 3 4 h
Tasks Tasks Tasks

Code for these experiments: https://github.com/GMvandeVen/continual-learning



Continual Learning Categorization 21

iCaRL [18] - | | GEM [50]  EWC [28] LwF [53] I | :
ER [44] DGR[14] A-GEM[8]  IMM [29] LFL[54] PackNet[56]  PNN [59]
SER [45] PR [47] GSS [43] S [51] EBLL [11] PathNet [32] Expert Gate [7]

TEM [46] CCLUGM [48] REWC[52] DMC[55 Piggyback[57]  RCL[60]
LGM [49] MAS [15] HAT [58] DAN [19]

B :

Walk [16]

Source: De Lange et al. (2021, TPAMI)

Architectural Strategies

B tion Strategi Reh | Strategies

Source: Maltoni & Lomonaco (2019, Neural Networks)

Rehearsal Generative Replay

Regularization Architectural

Source: Lesort et al. (2020, Information Fusion)

Modularity-based methods
@00 @@eC @@/ov

Source: Hadsell et al. (2020, Trends in Cognitive Sciences)




Continual Learning Strategies

Parameter regularization

Parameter 1

Task 1 loss

.

Task 2 loss

no reg

DRI

+reg

PR -
L -
P .

Parameter 2

Functional regularization

Task 2 data

f@
fo

Anchor
points

Context-specific components

— Task 1
— Task 2
— Shared

Replay
Task 1 Task 2
t t
(x(l),y(l)) - (x(z)’y(z))

.."‘... f(i(M)vy(M))

S

Template-based classification

Class 1
template

Feature 1

Class 2 template

50

oo

"'}'5}'1'.' x (test)

Feature 2
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Regularization

23

* In continual learning, regularization typically means adding a penalty term to
the loss function to encourage the model to stay close to a previous version of

itself.

* Often, the version relative to which changes are penalized is a copy of the model
stored after finishing training on the last task

 Two forms of regularization:

Parameter regularization

Parameter 1

Task 2 loss

Parameter 2

Functional regularization

Task 2 data

Anchor
points

X



Parameter Regularization 2

Parameters important for past tasks are encouraged not

Task 2 loss
to change too much when learning a new task -
% Task 1 loss ‘T?;eg
Can often be interpreted as sequential approximate a vl
Bayesian inference on the network’s parameters Parameter 2

Representative methods: T =Lt 10 -0l

° E|aStiC We|ght ConSOIidation [EWC] (Klrkpa rtriCk et al., 2017 6": parameters relative to which changes are penalized
PNAS) I: estimate of how important parameters are

[l.llg : weighted norm
* Synaptic Intelligence [SI] (Zenke et al., 2017 ICML)

Task-incremental Domain-incremental Class-incremental
14 Joint 14 Joint 14 Joint
EWC/SI
% 4 0.84
5.8 0.95 LE
oo
|~ a 0.8 1 0.6
g % 0.9
]
% 5 0.7 1 &) 0.4 4
= > 0.85+4 .
° i EWC = EWC/SI
None 0.6 None 0.2 1 None
> >
<
’. T T T T <" T T T T 0= T T T T
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Tasks Tasks Tasks

Code for these experiments: https://github.com/GMvandeVen/continyal-learning




Functional Regularization

 The input-output mapping learned previously is
encouraged not to change too much at a particular
set of inputs (the ‘anchor points’)

* Also referred to as knowledge distillation

* Representative methods:
* Learning without Forgetting [LwF] (Li & Hoiem, 2017
TPAMI)
* Functional Regularization Of Memorable Past [FROMP]
(Pan et al., 2020 NeurlPS)

Task-incremental Domain-incremental
Joint

[}
1

— S Te— / FROMP

o

o

w
1

FROMP

= Sl

EWC
None

Test accuracy
(over tasks so far)
o
(s}

bt

(2]

w
1

None

v

1 2 3 4 5 1 2 3 4 5
Tasks Tasks

25

Task 2 data

Anchor X

points

Liotat = L + (fﬂ: fﬂ*)cﬂ

fg+: function relative to which changes are penalized
A: set of ‘anchor points’ at which the divergence
between fg and fg+ is measured

Class-incremental

14 Joint
0:87 FROMP
0.6 4
0.4 4

= EWC/SI
0.2 4 None
0 T
1 2 3 4 5
Tasks

Memory buffer size (FROMP): 100 examples per class Code for these experiments: https://github.com/GMvandeVen/continual-learning



Test accuracy
(over contexts so far)

Replay

* Current training data is complemented with data
representative of past observations
* The replayed data can be sampled from a memory

buffer or a generative model

* Representative methods:

» Experience Replay [ER] (Chaudhry et al., 2019 arXiv)
* Deep Generative Replay [DGR] (Shin et al., 2017 NeurlIPS)

Task-incremental

14 Joint
DGR/ER
/FROMP
|
0.95+ EWC/ S|
0.9+
0.854
None
<
1 2 3 4 5
Tasks

Memory buffer size (FROMP): 100 examples per class

0.9 4

0.8 -

0.7 4

0.6 4

Domain-incremental

Joint

DGR

—  ER

FROMP

. 1

>1

EWC
None

Code for these experiments: https://github.com/GMvandeVen/continual-learning

Task 1 Task 2

/\ /\ -
t t

(x(l),y(l)).;: (x(z)'y(z))
J g

Class-incremental

| ————

Joint

DGR/ER
FROMP

- EWC/SI

None

26



Context-specific components 2

* Parts of the network are only used for specific tasks — Task 1
: — Task 2
e Commonly used example: multi-headed output — Shared

layer

* Requires knowledge of task identity at test time
* Context-dependent Gating [XdG] (Masse et al.,, 2018
PNAS)
e Separate Networks [SepN]

Task-incremental

14 Joint
SepN/XdG
_ DGR/ER :
> & 0.951 ewc e -
o Context-specific components can only be used
2Y o009 with domain- or class-incremental learning when
T @©
IR combined with a module for context identification
= -
E 8 None
>
$l L] L] L] L]
g 2 3 4 5

Tasks

Memory buffer size (FROMP): 100 examples per class Code for these experiments: https://github.com/GMvandeVen/continual-learning



Template-based classification 2

A ‘template’ is learned for each class, and classification is

performed based on which template is most suitable for Class 2 template
sample to be classified — | Class 1

Examples of templates are prototypes or generative models 5 tegpiate ]?8(2)
Allows comparing classes ‘at test time’, rather than during 8| *
training Sl
Representative methods Foature 2

* Incremental Classifier and Representation Learning [iCaRL] (Rebuffi et
al., 2017 CVPR)
* Generative Classifier [GenC] (van de Ven et al., 2021 CVPR-W)

Class-incremental

14 Joint
GenC/iCaRL
S : DGR/ER
0.8 4

FROMP

Template-based classification methods could, in
theory, be used for all three scenarios, but its specific
benefit is only relevant for class-incremental learning B

0.6 1

Test accuracy
(over tasks so far)

. EWC/SI

0.2 None

0

1 2 3 4 5
Tasks

Memory buffer size (FROMP): 100 examples per class Code for these experiments: https://github.com/GMvandeVen/continual-learning



Overview

Strategy Method Budget GM Task-IL Domain-IL Class-IL
Baselines None - lower target 84.32 (+0.99) 60.13 (+1.66) 19.89 (+0.02)
Joint - upper target 99.67 (+0.03) 98.59 (+0.05) 98.17 (+0.04)
Context-specific components Separate Networks - 99.57 (+0.03)
XdG - 99.10 (+0.10)
Parameter regularization EWC - 99.06 (+0.15) 63.03 (+1.58) 20.64 (+0.52)
Sl - 99.20 (+0.11) 66.94 (+113) 21.20 (+0.57)
Functional regularization LwF - 99.60 (+0.03) 7118 (+1.42) 21.89 (+0.32)
FROMP 100 - 99.12 (+0.13) 84.86 (+1.02) 77.38 (0.64)
Replay DGR - Yes 99.50 (x0.03) 95.57 (+0.30) 90.35 (x0.24)
BI-R - Yes 99.61(+0.03) 97.26 (+0.15) 94.41 (+0.15)
ER 100 98.98 (+0.07) 93.75 (+0.24) 88.79 (+0.20)
A-GEM 100 98.54 (+0.10) 87.67 (¢1.33) 65.10 (+3.64)
Template-based classification Generative Classifier - Yes 93.82 (+0.06)
iCaRL 100 92.49 (+0.12)

Reported is the final test accuracy (as percentage, averaged over all contexts) of all compared methods on the Split MNIST protocol, which is performed according to all three scenarios. The
experiments followed the academic continual learning setting and context identity information was available during training. The column ‘Budget’ indicates the number of examples per class
that was allowed to be stored in a memory buffer. The column ‘GM’ indicates whether a generative model was learned, for which additional network capacity was used. Each experiment was
performed 20 times with different random seeds, reported is the mean (+s.e.m.) over these runs.

Source: van de Ven et al. (2022, Nature Machine Intelligence)



Hybrid Models

30



Why Hybrid?

* Each CL algorithm has advantages and
disadvantages and works best within
specific scenarios

e Such approaches are often orthogonal with
respect to each other

* Biological learning systems seems to apply
several approaches for learning continually

* Hybrid approaches are underexplored and
may potentially find better Effectiveness-
Efficiency trade-offs

Rehearsal

/" ~Pure

Rehearsal /<

Generative Replay

31



AR1 and (Negative) Generative Replay?

Key Aspects

* Generative Replay is often difficult to scale
(quality and diversity), what about generative

Output layer (classes)

|atent replay? ( Generative g? ég
Class specific B L s g
discriminative — g= E s
e Sharing weights between the discriminator and features
. . i (at minibatch level)
the generator is possible AN

generic

* Incremental training of the generator in the loop features
.___________///

(unsup training or

* Negative replay: use generated patterns as

Data layer

Backward pass
(native patterns)

)
o C
L
T o
bt =1
[
Ea
G o
gz
(=]
s

negative examples only

Generative Negative Replay for Continual Learning, Graffiti et al, 2021.



Summary and Next Steps

 Hybrid approaches are more complex and more
difficult to parametrize in general but they can
provide Effectiveness-Efficiency trade-offs.

e Such approaches are still not well investigated but
offer a nice path for future research explorations.

 They are often among the winning approaches in
continual learning challenges

* More flexible and tunable algorithms (and possible
self-adjusting hybrid approaches) may be quite
interesting to investigate.

Rehearsal Generative Replay

V- o Pure
Rehearsal

® GR

\\ 5 _'f‘{,,/’ %
Regularization ~ Architectural

CVPR 2020 Continual Learning in Computer Vision Competition: Approaches, Results, Current Challenges and Future Directions, Lomonaco et al, 2020.

“. @ MeRGAN|
@ FearNet
® GDM

N
? ® CWR
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Research Journey (2012 - 2023) 34

* Kernel Bayesian ART/ARTMAP/Associative Cognitive Robotics
Memory

* Topological Kernel Bayesian ART/ARTMAP

* Deep Kernel Bayesian
ART/ARTMAP/Associative Memory

* Kernel Bayesian ART/ARTMAP/Associative Connected Health
Memory - . q

* Online Recurrent Kernel-based Extreme Analytlc:s Diagnosis &
Learning/Reservoir Machine Prognosis

* Genetic Ensemble Fuzzy Extreme Learning
Machine

* Topological Kernel Bayesian ART/ARTMAP Topological

* Biologically Inspired Vision ZD/SLAM/surface

* Deep Kernel Bayesian .
ART/ARTMAP/Associative Memory reconstruction




ART-based Triple Memory Model (2019-2022) 35

Multi-Channel Art-based Triplet Memory (2022)

Multi-Modal ART-based Triple-
Memory + Recurrent Kernel Machine

Multi-Channel Art-based Dual-Memory (2020)

Multi-Modal ART-based Dual-
Memory + Recurrent Kernel Machine

Enhanced Episodic Memory ART (EEM-ART) 2019
Multi-modal ART-based Episodic Memory

Multi-Channel BART 2016
Topological Bayesian ART + Multi-Modality

Topological Gaussian ART (TGA) 2016

Topological Gaussian ART + Fuzzy
Motion Planning

WH Chin, N Kubota, CK Loo, (2022) An Episodic-Procedural Semantic Memory
Model for Continuous Topological Sensorimotor Map Building, Cognitive
Robotics and Adaptive Behavior, Interopen publisher.

Wei Hong Chin, Chu Kiong Loo, Stefan Wermter, (2020), Multichannel
Recurrent Kernel Machines for Robot Episodic-Semantic Map Building, 1st
SMILES (Sensorimotor Interaction, Language and Embodiment of Symbols)

workshop, ICDL 2020

Wei Hong Chin, Yuichiro Toda, Naoyuki Kubota, Chu Kiong Loo, Manjeevan
Seera (2019) Episodic Memory Multimodal Learning for Robot Sensorimotor
Map Building and Navigation. IEEE Trans. Cogn. Dev. Syst. 11(2): 210-220

1

Wei Hong Chin, Chu Kiong Loo, Manjeevan Seera, Naoyuki Kubota, Yuichiro
Toda (2016) Multi-channel Bayesian Adaptive Resonance Associate Memory
for on-line topological map building. Appl. Soft Comput. 38: 269-280

1

Wei Hong Chin, Chu Kiong Loo, Yuichiro Toda, Naoyuki Kubota (2016) An
Odometry-Free Approach for Simultaneous Localization and Online Hybrid

Map Building. Frontiers Robotics Al 3: 68




Research Journey (2012 - 2023) 36

Continual Learning

Continual learning (narrow)
how to deal with non-stationarity
in training data

_Training

Lifelong learning - (broad)
an agent learning throughout its
lifetime

Prediction

Continual / Lifelong Challenges Period International Collaboration
Learning

Template-based classification

Class 2 template

Class 1
template

Feature 1

(Continual Learning) * Concept drift 2012 - 2022 .
Data arrive incrementally e Data stream learning .
(Lifelong Learning) * Concept drift 2023 - now :
Multiple tasks * Data stream learning
e Catastrophic Forgetting :
« Task/Domain/Class :

Incremental

Tokyo Metropolitan University
Osaka Metropolitan University
University of Hamburg

King Mongkut Institute of
Technology Latkrabang

Dalian Maritime University
Hohai University

Murdoch University



Research Journey (2012 - 2023) 37

Continual Learning

Continual learning (narrow) Template-based classification

how to deal with non-stationarity
in training data

Class 2 template

Training

Class 1
template

Feature 1

Lifelong learning - (broad)
an agent learning throughout its
lifetime

Prediction

Feature 2

Continual / Lifelong Challenges Period International Collaboration
Learning
(Continual Learning) * Concept drift 2012 - 2022 Tokyo Metropolitan University
Data arrive incrementally e Data stream learning e Osaka Metropolitan University
* University of Hamburg

(Lifelong Learning) * Concept drift 2023 - now * King Mongkut Institute of
Multiple tasks * Data stream learning Tec-hnology- L-atkrab:fmg _

. Catastrophic Forgetting e Dalian Maritime University

« Task/Domain/Class * Hohai University

ererenl * Murdoch University




What is Lifelong Learning?

* The ability to update a learner one
sample at
a time on an evolving data stream

* Closely resembles the evolving natural world
(e.g., temporal correlations)

* Inputs are typically not independent and
identically distributed (non-i.i.d.)

Frame #1

* Challenges

Frame #2

* Catastrophic forgetting of previous knowledge
e Enabling backward and forward knowledge

Frame #3

Frame #4

transfer

38



Why Study Embedded Lifelong Learning?

Less compute means agents learn on-device

No cloud computing in space or in internet
deprived locations

Customized for each user without sending
personal information through the web

On-device learning for AR/VR, smart toys, robots,
phones, and more

39



How Could Lifelong Learning Benefit Al? ®

1. Agents could learn and adapt in real-time

e Data naturally evolves over time
* Immediate inferences about new data could be made
* On-device learning could reduce privacy concerns

2. Transfer of knowledge among similar
tasks could make learning more efficient

3. Could result in more efficient learning
algorithms




Lifelong Learning Considerations

1. Learn and recall immediately

2. Learn data in any order without catastrophically
forgetting

* Learning one class at a time induces the most forgetting

* Learning from ani.i.d. data stream induces the least
forgetting

* Must test both capabilities and those in between

3. Transfer of learned representations for
efficiency

4. Learn using limited memory and compute
overhead

5. Scale to large-scale, high-dimensional problems

v

Instant
Training
Instant
Training
Instant
Training
Instant
Training

Streaming Learning




The Episodes-to-Concepts (EpCon) Model

W

(initial encoding )

concept formation

pattern completion

integrative encoding |

Lressnssns,

.l
pattern separalign

........... =

( concept coding |

M.L. Mack et al. / Neuroscience Letters 680 (2018) 31-38

Initial Encoding
* Attention Biasing

Concept Formation

* Pattern completion

* Memory-based prediction error
* Pattern separation
* Pattern integration

* Concept coding
» Affected attention biasing

42



Lifelong Learning Setup

43



Incremental Batch Learning

1. Dataset is broken into several
batches (chunks)

Includes task-based learning

2. At each time step, the learner...

Receives a batch of data from one or
more classes
Loops over the batch until learned

Is evaluated at the end of training the
batch

44

Task A Task B

Py &8 -

ﬂ UEpochs ﬂ UEpochs

[

Agent Observing Data

Time |




Incremental Batch Learning

Advantages
* Recently demonstrated much success
* Makes learning easier since large batches

45

Task A Task B

are closer
* to independent & identically distributed

(i.i.d.) T

UEF‘OC"S ﬂ UEpochs

Caveats (

Agent Observing Data

 Slow (i.e., data accumulation, looping, —

delayed evaluation)
* Not reminiscent of how humans and animals learn

Relevant for applications where:
* More memory and compute are available
* Immediate updates and inferences are not needed

e Batch processing could be advantageous



Streaming Learning

1. Instances often have temporal
correlations and are non-i.i.d. (videos)

2. At each time step, the learner...
* Receives one new sample
* Learns the sample and then is evaluated

3. The learner is only allowed one loop
through the entire dataset

46

Task A Task B
| |

ANl - |
0y A g = :
\ ;: #ﬁ : * o
' » P §

1 4 1 4

]
[

Agent Observing Data

Time [
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Streaming Learning

Advantages
* Closer to how humans/animals learn
* Better suited for real-time applications

Caveats
 Performance may not match offline batch
processing
* For supervised learning, must have labels at
each time-step

Relevant for applications where:
e Memory and compute are limited
* Immediate updates and inferences are
needed




48
Pre-Training Before Lifelong

Learning
Many continual learning systems perform Pre-Training | Online Continual
. o e i : Training
an offline pre-training phase Seff-Supervisedor |
Supervised Loss |
. .. Offline Batch t E t
Offline pre-training: Update  / \ _—
C CNN v frmmmee
! Fixed
« Train on the first N classes / examples / first mega-batch f ; I" —y
o . e ey . l niine Upaate
the dataset in an offline way to initialize the deep neural :
network ! (X [ Xy | |7]+1a}'j+1|

« Then perform lifelong learning afterwards



Lifelong Representation Learning +

Every time new data is observed, update both the classifier and feature
representations

Could include a pre-training phase prior to lifelong learning
.

Task 1 Task 2

= — 5 — > — >
- g7 ENEN?  EEENC  mNeM?

Image: https://mila.quebec/en/article/la-maml-look-ahead-meta-learning-for-continual-learning/

Task 4




Pre-Trained Features vs. Lifelong 50
Representation Learning

Pre-Training Phase (without lifelong representation
learning):

« Downstream tasks are similar to pre-training tasks

« Limited compute is available for downstream tasks

~
Q| —»
| o |2
« Very little downstream task data is available B < >
Lifelong Representation Learning: Image: https://www.v7labs.com/blog/self-supervised-learning-guide

« Downstream tasks change significantly over time
« Task-specific features are needed
« Requires more compute to update features
« Another consideration is feature update types:
« Supervised, Unsupervised/Self-supervised



Practical Hardware Considerations

» Beyond real-time processing, successful lifelong learners could make
learning algorithms more efficient thus reducing energy and power
consumption

» Better for the environment
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Desislavov et al., 2021
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Lifelong Learning for Embedded Devices

- Embedded Device: a device that is purpose built for its application
« Typically resource constrained in terms of compute, storage, and power
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Embedded Lifelong Learning Considerations

- Embedded lifelong learning poses unique challenges Factors
due to real-world and hardware constraints
o Scale Imbalance
« Limited memory and compute
« Natural world is imbalanced/long-tailed with need for
low-shot learning Videos Low-Shot
 Scalability to infinite data streams
Memory &
 Natural world is temporally correlated (videos) Compute

We expect our agent to be performant regardless of
these factors



Embedded Lifelong Learning Challenges

Applications may be memory or compute limited:
« Some lifelong learning approaches may not be applicable

« There has not been a significant amount of research on imbalanced
and low-shot lifelong learning

« Lifelong learning approaches may not scale to millions of classes or
examples

More research is needed to apply lifelong learning mechanisms
to real-world applications like embedded devices
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Underexplored Capabilities for
Lifelong Learning

« Better pre-trained features

« Better self-supervised methods and on larger/more diverse datasets

« Techniques to improve low-shot learning
» Learning from very few instances can yield speed improvements

« Techniques to improve robustness to additional domain shifts

Open-world learning:
« ldentify unknown inputs and then incrementally learn them

U1

5

Open Set

Multi-class Classification Recognition

o s
O

Closed 1 1 Open
T 1 -
Training and Multiple known
testing samples classes, many
come from unknown
known classes classes

Scheirer et al., 2013



Explainable Lifelong Streaming
Learning (ExLL)

» The Episodes-to-Concepts (EpCon) Model

- Empirical Data Analysis (EDA)

56



The Episodes-to-Concepts (EpCon) Model

S e e

concept formation 1 ( concept coding )

pattern completion integrative encoding [

...........

(initial encoding |

/r

M.L. Mack et al. / Neuroscience Letters 680 (2018) 31-38

57

Initial Encoding
* Attention Biasing

Concept Formation

e Pattern completion

* Memory-based prediction error
e Pattern separation
* Pattern integration

Concept coding
e Affected attention biasing
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Plamen P. Angelov
Xiaowei Gu

Empirical Approach to
Machine Learning

EXTRAS ONLINE

Empirical Data

Analysis (EDA)
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Data Clouds
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Data Clouds vs Clusters

60

Boundaries Defined as hyper-ellipsoids
Centre/Prototype Defined

Distance between a data Centre/Mean

point

Membership function Approximation of an ideal

distribution, assumed a priori

Having a data clouds, we can extract rules

Rule': IF (x ~ C') THEN (Output’)

Voronoi tessellation
Extracted post factum

Focal point

Reflect the real data
distribution



Empirical Data Analysis (EDA)

Probability theory, statistics number of restrictive assumptions which usually do not
hold in reality

* Pre defined smooth, “convenient to use” types of distribution;
« Infinite amount of observations/data points;

« Independence between data points (so called iid (Independent and Identically
Distributed data)

« EDA, Entirely based on the empirical observations of discrete data points and
their mutual position forming a unique pattern in the data space.

« An effective combination of the frequency and the space distance
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EDA — Cumulative Proximity

Cumulative proximity is a measure indicating the degree of closeness/similarity of a
particular data point to all other existing data points:

X2

[
ir gy od . Lo
o 500 .
0 e
i

>
X1



EDA — Basic measure,

Standardized Eccentricity - represents the association of the data point
with the tail of the distribution and the property of being an outlier/
anomaly

€ is very convenient to represent well known Chebyshev inequality. It turns
into a simple check if ¢,(x)>10 or not for n=3 because:

P(gN(x)Sanrl)zl— 12
n
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EDA - Basic medsure, D >

Data density is inversely proportional to the standardized
eccentricity.

DK(I,'):(‘ . = By 2w suylle
ek (X;)

It can be proven that for Euclidean and Mahalanobis
distances D gets the form of Cauchy function:

RDE-Cauchy type, Angelov(*02)

1 V-1 1

Dy(x,)= =y +— Xy W =X k
/ 2 i T—: AT — 1 2
i \,] — U Ay N Hy N N H, 1 _;Z" x; =X "

S D(x)=e ™

‘X' N /"N ”N '\' _ l 1 1
- ) T =

i, =—XK 4—x 5 X =X%K = p

N e R 1 | % 1 2
N N z 2 x|
e i=1

The density in the data space is a key characteristic of :

i

2
| e

) . 1k
anomalies and model structure (focal points for local sub- 1+;§||x,-—xk
models).



EDA - Basic measure, 7 >

Multi-modal (discrete global) typicality

f:Dy (u;) fraw ()

Tﬁ (”f ) ~ I l — Can be useq as pdf, .but is derivgd entirely
Z f;Dy (uj ) Z qu; (”j ) from data with no prior assumptions
Jj=1
0.01 4
S~ 0.005 -
& R
40

0 - ' 2
wind gust (mph) wind chill (°C) wind gust (mph) wind chill (°C)



Evolving Intelligence based on Density

Learning concept from experience (extract knowledge from data streams)

A data sample with high density (D) is eligible to be a focal point of a
Cloud/local sub model

A data sample that lies in an area of data space not covered by other local
sub-models is also eligible to form a new local sub model

Avoid overlap and information redundancy in forming new local sub models

Remove old clouds and low support utility ones
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EDA + Episodes-to-Concepts (EpCon) Model ¢

Empirical Data Analysis Episodes-to-Concepts (EpCon)
Model

A data sample with high density (D) is  Initial Encoding
eligible to be a focal point of a « Attention Biasing
Cloud/local sub model

A data sample that lies in an area of Concept Formation

data space not covered by other local « Pattern completion

sub-models is also eligible to form a « Memory-based prediction error
new local sub model « Pattern separation

Avoid overlap and information « Memory-based prediction error
redundancy in forming new local sub - Pattern integration

models

Remove old clouds and low support * Pruning

utility ones



Explainable Lifelong Streaming
Learning (ExLL)
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Explainable Lifelong Learning Considerations

1. Learn and recall immediately

2. Learn data in any order without catastrophically
forgetting

3. Transfer of learned representations for
efficiency

4. Learn using limited memory and compute
overhead

5. Scale to large-scale, high-dimensional problems

6. Explain model decisions at the intermediate and final
stages of the decision-making process

Time

Instant

Training

Instant

Training

Instant

Training

Instant

Training

Streaming Learning
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EXLL - Inference 74

Shrinkage regularization
A=[(1—=e)f+ ()]

€ = le™4

New unlabeled image ﬁ

MobileNetV3, EfficientNet, RestNetl8
Pre-trained on Imagenet

Fully-connected layer
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EXLL — Rule Extraction

Rule #1 ..|THEN Class is “Aqueduct”

Rule #2 ..|THEN Class is “Aqueduct”

Rule #3 ..|THEN Class is “Arch”

Rule #4 ..|THEN Class is “Arch”

Fig. 4: Explainable rules extracted from prototypes for the
classes “Aqueduct” and “Arch™ from Places-365. Each rule is
made up of training images associated with the corresponding

prototype.
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Test Image

“Shampoo”
correctly predicted as
“Shampoo”

“Shampoo”
Wrongly predicted as
“Lotion”

“Toothpaste”
Wrongly predicted as
“Shampoo”

“Lotion”

“Shampoo”

Near Hits

“Lotion”

“Shampoo”

Near Misses

“Lotion”

H B

“Toothpaste”

“Book”

Fig. 3: Example of “Hits”, “Near Hits”, and “Near Misses”
for the F-SIOL-310 dataset. The test image in the top row is
an example of a True Positive result, the test image in the
middle row is a False Negative result, and the test image in

the bottom row is a False Positive result.



Datasets and Orderings

* OpenlLORIS:

» Videos of 40 object classes each with 1 to 9
object instances (121 instances)

e Each object instance collected under 4 domains
with 9 difficulties

* Orderings: Instance and Low-Shot Instances

* Places-365:
* Scene classification of 365 classes

* We study the original version with over 1.8M
images

* We also study a long-tailed version
e Orderings: iid and class iid

e F-SIOL-310
 Static images of 22 household items.

* Total 310 object instances and 620 static images

e Using class-iid data ordering, study 5-shot &
10-shot learning scenarios

* Evaluating a model’s ability to learn from few
training samples.
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Comparison Methods
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Online Continual Learning:

* Fine-Tune

* Multi-Class Perceptron

e Streaming One-vs-Rest (SOVR)
* Nearest Class Mean (NCM)

* Gaussian Naive Bayes

e Streaming Linear Discriminant
Analysis (gSLDA)

* Replay

e Store 2 examples or 20 examples per

class

Mobile CNNs:

* MobileNet-v3 (Small)
* MobileNet-v3 (Large)
* EfficientNet-BO

* EfficientNet-B1

* RestNet-18
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NetScore for Lifelong Learning

a(M) measures the final accuracy of a model

p(M) is the total number of parameters

c(M) is the number of minutes needed for the experiment

Scores methods across three axes: classification efficacy, memory, and computer

s =20 and a = 2 to prioritize classification accuracy, and B =y = 0.25 to moderate the large values of
p(M) and c(M) [73].

e Higher NetScores indicate better performance.



100
86.9 89.6
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60

Avg. Final Accuracy [%)

0
Perceptron Fine-Tune  Naive Bayes

Instance ordering trains learners on all object instances while low-shot instance

95.2 97.2 96.4 96.9
80.8
53.1 T
48.3 48.1 . o 47.7 48.5 9.8
40 34.2
28.7
18.0
20 l T
NCM

99.2

SOVR Replay (20pc) SLDA EXLL-M EXLL-P EXLL-F

B instance M Low-Shot Instance

ordering trains learners on one object instance from each object class.

HOW We" do methods * All models displayed lower accuracy when using low-shot

instance ordering. Perceptron and Fine-Tune showed a much
bigger drop, shows poor generalization to out-of-domain inputs

generalize from few
instances?

OpenLORIS

* Naive Bayes, SOvR, and NCM were less accurate than Perceptron
and Fine-Tune for the full instance ordering, but outperformed

them for the low-shot condition.

* The ExLL models showed the best balance between the two
ordering methods, while EXLL-F outperformed all other models

for both orderings.
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Method MNet-S  MNet-L  ENet-BO  ENet-B1  RN-18 | Mean Method MNet-S  MNet-L.  ENet-BO  ENet-B1 ~ RN-18 | Mean
Perceptron 0.793 0.880 0.935 0.942 0.796 0.869 Perceptron 0.098 0.167 0.272 0.283 0.082 0.180
Fine-Tune 0.835 0.915 0.958 0.963 0.809 0.896 Fine-Tune 0.043 0.066 0.238 0.232 0.030 0.121

Naive Bayes 0.311 0.526 0.780 0.787 0.015 | 0.483 Naive Bayes 0.232 0.366 0.421 0.399 0.021 0.287
SOvVR 0.374 0.477 0.739 0.723 0.346 | 0.531 SOvVR 0.259 0.323 0.449 0.459 0224 | 0.342
NCM 0.729 0.789 0.859 0.867 0.797 0.808 NCM 0.442 0.474 0.516 0.514 0.463 0.481

Replay (20pc) 0.921 0.956 0.977 0.978 0.920 | 0.952 Replay (20pc) 0.453 0.480 0.529 0.532 0.446 | 0.488
DA S SLDA 0.445 0.454 0.472 0.460 0.442 | 0454
ExLL-M ExLL-M 0.463 0.493 0.504 0.457 0.440 0477
ExLL-P ExLL-P 0.470 0.501 0.500 0.482 0.475 | 0.485
ExLL-F X ) 0.481 0.511 0.511 0.495 0.492

Table 1l presents the best accuracy scores of online Table lll presents the performance of the models across
continual learning models across different CNN backbones different CNN architectures for low-shot instance ordering.
when trained using instance ordering.

OpenLORIS
 Performance is best with EfficientNets and

How does CNN choice worst with ResNet-18 using instance ordering
lefect performq nce? * EffcientNet yields better performance and

requires fewer computational resources

* For low-shot instance ordering, the EfficientNet
backbone CNNs again outperformed the other
backbone CNNs.



Places-365 for two data ordering methods iid and class-iid.

Method 11D Class-11D Mean
MNet-S  MNet-.  ENet-BO  ENet-BI ~ RN-18 | MNet-S  MNet-L.  ENet-BO  ENet-BI ~ RN-18

Perceptron 0.303 0.344 0.352 0.340 0.294 0.004 0.003 0.012 0.013 0.005 0.167

Fine-Tune 0.214 0.252 0.293 0.280 0.217 0.003 0.003 0.006 0.006 0.003 0.127

Naive Bayes 0.028 0.093 0.250 0.249 0.003 0.028 0.093 0.250 0.249 0.003 0.124

NCM 0.285 0.332 0.361 0.356 0.322 0.265 0.309 0.336 0.329 0.300 | 0.319

Replay (20pc) 0.289 0.323 0.354 0.348 0.261 0.251 0.279 0.297 0.295 0.235 0.293

.4 = 62 G )7 ) 3 ‘

Places-LT for two data ordering methods iid and class-iid, Places-LT tests how well models

perform with severe imbalance

0.356
0.365
)

Method 1D Class-11D Mean
MNet-S  MNet-L.  ENet-BO  ENet-Bl  RN-18 | MNet-S  MNet-L.  ENet-B0  ENet-B1  RN-18

Perceptron 0.152 0.185 0.213 0.206 0.149 0.017 0.028 0.071 0.073 0.015 | 0.110

Fine-Tune 0.136 0.163 0.197 0.191 0.141 0.015 0.021 0.071 0.075 0.004 | 0.101

Naive Bayes 0.015 0.050 0.199 0.213 0.100 0.015 0.050 0.199 0.213 0.001 0.105

SOVR 0.089 0.149 0.262 0.245 0.146 0.089 0.149 0.262 0.245 0.146 | 0.178

NCM 0.265 0.309 0.336 0.329 0.300 0.265 0.309 0.336 0.329 0.300 | 0.307

Replay (20pc) 0.239 0.267 0.290 0.282 0.223 0.241 0.268 0.306 0.295 0.193 | 0.260
9 3 33 y) 3 33 37 3| 3

0.356 0.392 0.407 0.400 0.360 0.311 0.331 0.338 0.331 0.345 0.357

0.265 0.297 0.315 0.305 0.277 0.265 0.300 0.314 0.303 0.273 | 0.291

0.324 (.349 0.362 0.351 0.331 (.325 0.351 0.359 0.350 0.330 0.343

How robust are

methods to scale and

imbalance?

Places-365 & Place-LT

*  We compute the harmonic mean across orderings, emphasizing the
importance of performing well on both orderings

Best methods: ExLL-F->EXLL-P ->ExLL-M->SLDA
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* EXLL-M was the least affected by dataset imbalance while
prototype-based inference and pairwise fusion showed a 7.4%
and 12.1% loss in performance respectively when trained with
Places-LT.



F-SIOL-310 was selected to observe how the online continual learning methods perform in low-shot 82
continuous learning applications.

Misthicid 5-Shot 10-Shot
MNet-S  MNet-.  ENet-BO  ENet-BI  RN-18  Mean MNet-S  MNet-L.  ENet-BO  ENet-B1  RN-18  Mean
Perceptron 0.181 O.177 0.406 0.454 0.049  0.253 0.158 0.223 0.354 0.458 0.051 0.248
Fine-Tune 0.183 0.205 0.416 0.460 0.090 0.270 0.127 0.199 0.389 0.453 0.090  0.251
Naive Bayes 0.344 0.554 0.816 0.828 0.035 0.515 0.320 0.537 0.806 0.854 0.015 0.506
SOVR 0.592 0.666 0.679 0.693 0428 0.611 0.561 0.702 0.650 0.752 0.504  0.633
CBCL 0.853 0.878 0.886 0.838 0.848 0.860 0.883 0.906 0.888 0.892 0.869  0.887
NCM 0.853 0.871 0.886 0.885 0.885 0.876 0.883 0.906 0.893 0913 0.896  0.898
Replay (20pc) 0.541 0.632 0.594 0.612 0.624  0.600 0.625 0.694 0.714 0722 0.731 0.697
SLDA 0.880 0.899 0.912 0.903 0.854  0.889 0.924 0.948 0.938 0.936 0910  0.931
ExLL-M 0.842 0.873 0.863 0.847 0.851 0.855 0.926 0.942 0.938 0.928 0.948  0.936
ExLL-P 0.827 0.832 0.799 0.755 0.803 0.803 0.927 0.934 0.897 0.879 0.930 0913
ExLL-F 0.889 0.905 0.887 0.854 0.885 0.884 0.961 0.966 0.952 0.943 0.968  0.958

F-SIOL-310

!'lOW well are me'!:hOdS * For the 5-shot scenario, EXLL-F is slightly
INn low-shot continuadl outperformed by SLDA (0.884 vs. 0.889
|eqrning? respectively).

* On the other hand, for the 10-shot scenario,
EXLL-F significantly outperformed the next-
best methods, ExLL-M and SLDA (0.958 vs.
0.936 and 0.931 respectively).
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Test Image Hits Near Hits Near Misses
hu lb " Eﬁh

“Shampoo” “Shampoo” “Shampoo” “Lotion”
correctly predicted as

“Shampoo”

€2 I=

“Shampoo” “Lotion” “Lotion” “Toothpaste”

Wrongly predicted as
“Lotion”

“Toothpaste” “Shampoo” “Shampoo” “Book”
Wrongly predicted as
“Shampoo”

Fig. 3: Example of “Hits”, “Near Hits”, and “Near Misses”
for the F-SIOL-310 dataset. The test image in the top row is
an example of a True Positive result, the test image in the
middle row is a False Negative result, and the test image in
the bottom row is a False Positive result.



EXLL — Rule Extraction

-
—— .’ff_.’-_,! 7 ”
Rule #1|IF m OR g OR OR ...[THEN Class is “Aqueduct

8 OR ...|THEN Class is “Aqueduct”

Rule #3 ..|THEN Class is “Arch”

Rule #4 ..|THEN Class is “Arch”

Fig. 4: Explainable rules extracted from prototypes for the
classes “Aqueduct”™ and “Arch” from Places-365. Each rule is
made up of training images associated with the corresponding

prototype.



EXLL — Topology Visualization 85

Visualizing the topology of learned prototypes acquired Visualizing the topology of learned prototypes acquired
from the FSIOL-310 dataset. from the Places-365 dataset, for the first 10 classes.
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Results Summary
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* We studied the robustness of online continual
learners across various axes useful for
embedded learning:

* Omega: classification efficacy, compute
memory

* Video: ability to learn from temporally
correlated videos

* Low-Shot: ability to generalize from few
inputs
* Scale: ability to scale to large-scale data

* Imbal: ability to perform well on
imbalanced data

* Main Takeaways:

* ExLL-F (0.91) showed the best overall
performance. Replay 20pc (0.88) and SLDA
(0.88) outperformed the second-best ExLL
model, EXLL-P (0.84). The worst-performing

ExLL model, ExLL-M (0.78) is also
outperformed by NCM (0.81).
* ExLL is less efficient with respect to

computation and memory requirements.



Future Research Directions

» Self-supervised pre-trained features

* Currently do not work well for mobile CNNs

* Additional pre-training datasets

e Use of multi-layer features

* Online learners that update feature representations

* More compute time and concept drift

* Techniques to improve low-shot learning

* Additional tasks and efficiency improvements

Supervised

Unsupervised
implausible labels limited power
"COW"
Target
O
Q00 O 0O 0
: :
OO0OO0OO0O OO0
i) )
Input Input

OO0 OO
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Self-supervised
derives label from a
co-occuring input to
related information

O O 0O

OO0 OO0 0O
i)
Input 1

Input 2

moo

Penultimate Features
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“...Iit is not the strongest
that survives; but...the
one that is able best to
adapt...to the changing
environment....”

“Once you stop
learning, you start
dying.”

L.C. Megginson, re “On
the Origin of Species”

Albert Einstein

https://www.izlesene.com/iz/memcn3342



