東京都立大学 L5Gコンソーシアム

照度測定ロボットの紹介

2022年3月28日 株式会社きんでん 京都研究所第二研究開発部 辻元 誠

- 1. はじめに
- 2. 照度測定ロボットの概要
- 3. 照度測定ロボットの利用フロー
- 4. 照度測定帳票作成機能(SPIDERPLUS連携)
- 5. 照度測定ロボットの評価

1. はじめに(開発の背景)

開発の背景

【照度測定作業とは】

- ・照明器具取付施工における品質確認作業
- ・照度計で規定値(設計照度など)以上の照度があるか測定
- •一般的に外光(太陽光など)の影響を受けない日没後に行う

(課題)

- 測定者と記録者の2人作業
- ・多くの測定点を移動
- ・紙の記録をパソコンで入力 (提出帳票の作成)

1. はじめに(開発目標)

開発目標

【開発目標】

- •ロボット操作者1人で作業が可能
- ・事務所ビル(専有部)や物流倉庫などを自律走行できるロボット
- •ロボットが測定照度値を記録、蓄積
- •提出用測定帳票作成の自動化

- 1. はじめに
- 2. 照度測定ロボットの概要
- 3. 照度測定ロボットの利用フロー
- 4. 照度測定帳票作成機能(SPIDERPLUS連携)
- 5. 照度測定ロボットの評価

照度測定ロボット2号機

照度測定ロボット2号機

2次元測域センサ (Laser Range Finder)

床面照度測定

机上面照度測定

名称	照度測定ロボット2号機		
開発年度	2019年度		
サイズ	W380×D483×H210mm (床面照度測定時)		
重量	約10kg		
走行速度 (実験値)	1.26km/s (0.35m/s)		
連続走行時間	約2時間 (バッテリ2個装着時)		
二次元測域センサ 計測距離	30m		
二次元測域センサ 搭載高さ (レーザ照射面)	150mm		
照度計取付高さ (受光面)	机上面:750~900mm 床面:150mm		

JIS C7612

「床面または床面上15cm以内」 を満たす

自律走行の仕組み

ロボットの走行

初期位置周辺の物体は図面と一致が必要

使用実績

きんでん社内での照度測定ロボット使用実績と予定

実証評価・活用の実績(件数)

年 度	実証評価 (研究所立会)	活 用 (現場担当操作)	合 計
2019年度	8	0	8
2020年度	4	6	10
2021年度期 (~2022/2/20)	3	7	10
2022年度以降 (予定)	0	4	4
合 計	15	17	32 、

2022年2月20日時点

実証評価:開発者による操作・使用

活用:現場担当者による操作・使用

誰でも操作できるロボットへ進化

27件が事務所ビル・ 物流施設・工場での実績

- 1. はじめに
- 2. 照度測定ロボットの概要
- 3. 照度測定ロボットの利用フロー
- 4. 照度測定帳票作成機能(SPIDERPLUS連携)
- 5. 照度測定ロボットの評価

3. 照度測定ロボットの利用フロー

3. 照度測定ロボットの利用フロー

図面(画像ファイル) ロボット設定(走行設定ファイル)を作成

図面・ロボット設定を ロボットに送信

ロボット走行開始指示 (測定点の編集も可能)

ロボット走行(照度測定)

【ロボット走行動画】

3. 照度測定ロボットの利用フロー

- 1. はじめに
- 2. 照度測定ロボットの概要
- 3. 照度測定ロボットの利用フロー
- 4. 照度測定帳票作成機能(SPIDERPLUS連携)
- 5. 照度測定ロボットの評価

4. 照度測定帳票作成機能(SPIDERPLUS連携)

タブレット作業

ロボット自律走行

Kinden CORPORATION

4. 照度測定帳票作成機能(SPIDERPLUS連携)

- 1. はじめに
- 2. 照度測定ロボットの概要
- 3. 照度測定ロボットの利用フロー
- 4. 照度測定帳票作成機能(SPIDERPLUS連携)
- 5. 照度測定ロボットの評価

作業時間比較の概要

従来手法

照度測定ロボット

【作業条件】

- ・測定範囲(床面積):約1万平方メートル
- -総測定点数:191点
- ・部屋数:9部屋(ロボット設定は9部屋分必要)
- 事前準備、現場測定、帳票作成すべての作業時間を比較

事前準備

作業内容		作業時間		
		従来手法 (現場作業者2名)	照度測定ロボット (現場作業者1名)	
+	図面作成	10分	60分	
事前準備	ロボット走行設定作成	0	13分	
<u>₩</u> 1/#3	事前準備時間 小計(①)	10分	73分	
現場	ロボット組立	0	5分	
準備	タブレットによるロボット操作	0	2分15秒	
作業	現場準備作業時間 小計(②)	0分	7分15秒	
事前	が準備 合計時間 (A=①+②)	10分	80分15秒	

従来手法と比べて図面作成やロボット設定・組立てなど 事前準備には多くの時間を要する

現場測定

作業内容			作業時間	
		作業内容	従来手法 (現場作業者2名)	照度測定ロボット (現場作業者1名)
事前準備 合計時間(A)		備 合計時間(A)	10分	80分15秒
現場測定	測定	作業者測定	120分 (60分×2人)	0
		ロボット走行立会	0	8分10秒 (ロボット走行時間:81分40秒)
		測定結果収集	0	30秒
	現場測定時間 小計(③)		120分	8分40秒
事前準備+現場測定 合計時間 (B=A+③)			130分	88分55秒

ロボット走行中は作業者が照度測定に関与する必要はなく、 付近で別作業に従事することも可能

帳票作成

	作業時間		
作業内容	従来手法 (現場作業者2名)	照度測定ロボット (現場作業者1名)	
準備準備+現場測定 合計時間(B)	130分	88分55秒	
測定帳票作成(④)	135分	36分	
総作業時間(B+④)	265分	124分55秒	

- ・帳票作成時間を約73%短縮
- ・全体の作業時間を約55%短縮

ご清聴ありがとうございました

チーム、きんでん。 (施工力+技術力+現場力)

http://www.kinden.co.jp/

